1 内容简介
功率是表征电信号特性的一个重要参数。在直流和低频范围,可以通过测量电压和电流计算功率,功率的瞬时值可用下式表示:
对于周期信号,一个周期内的瞬时功率的平均值,称为有功功率。有功功率按下式计算:
一种功率表
对于正弦电路,下式成立:
上式中,U、I分别为正弦交流电的有效值,φ为电压与电流信号的相位差。
在超高频和微波频段,有TEM波和非TEM波之分。在TEM波的同轴系统中,电压和电流虽有确切含意,但测量其绝对值很困难。在波导系统中,因为存在不同的电磁模式,电压和电流失去唯一性。在个频段和各传输系统中,功率是单值表征信号强度的重要方法。在射频范围直接测量功率代替了电压和电流的测量。
2 度量单位
功率定义为单位时间内所做的功。基本单位为瓦(W),1W等于在1秒内做1焦耳的功。常用的功率单位还有兆瓦(1MW=10^6W)、千瓦(1KW=10^3W)、毫瓦(1mW=10-3W)、微瓦(1μW=10-6W)、皮瓦(1Pw=10-12W)。
另一种常用的功率单位以分贝毫瓦(dBm)表示。它以1毫瓦为基准电平P0=1mW,实际功率值P(mW)与P0比较后取对数。这是功率的绝对单位。
也可用分贝瓦(dBW)作为功率单位,此时P0=1W,即1 dBW=3 dBm。
3 分类标准
常见变频电量波形及频谱(5张)
功率计可分为:直流功率计、工频功率计、变频功率计、射频功率计和微波功率计。由于直流功率等于电压和电流的简单乘积,实际测量中,一般采用电压表和电流表替代。工频功率计是应用较普遍的功率计,常说的功率计一般都是指工频功率计。变频功率计是21世纪变频调速技术高速发展的产物。其测量对象为变频电量,变频电量是指用于传输功率的,并且满足下述条件之一的交流电量:
1、信号频谱仅包含一种频率成分,而频率不局限于工频的交流电信号。
2、信号频谱包含两种或更多的被关注的频率成分的电信号。
变频电量包括电压、电流以及电压电流引出的有功功率、无功功率、视在功率、有功电能、无功电能等。
除了变频器输出的PWM波,二极管整流的变频器输入的电流波形,直流斩波器输出的电压波形,变压器空载的输入电流波形等,均含有较大的谐波,右图中为常见变频电量的波形及相关频谱图。
由于变频电量的频率成分复杂,变频功率计的测量一般包括基波有功功率(简称基波功率)、谐波有功功率(简称谐波功率)、总有功功率等,相比工频功率计而言,其功能较多,技术较复杂,一般称为变频功率分析仪或宽频功率分析仪,部分高精度功率分析仪也适用于变频电量测量。
变频功率分析仪可以作为工频功率分析仪使用,除此之外,一般还需满足下述要求:
1、满足必要的带宽要求,并且采样频率应高于仪器带宽的两倍。
2、要求分析仪在较宽的频率范围之内,精度均能满足一定的要求。
3、具备傅里叶变换功能,可以分离信号的基波和谐波。
射频或微波功率计按照在测试系统中的连接方式不同分类
有终端式和通过式两种。终端式功率计把功率计探头作为测试系统的终端负载,功率计吸收全部待测功率,由功率指示器直接读取功率值。通过式功率计利用某种耦合装置,如定向耦合器、耦合环、探针等从传输的功率中按一定的比例耦合出一部分功率,送入功率计度量,传输的总功率等于功率计指示值乘以比例系数。
射频或微波功率计按的测量原理分类
测热电阻型功率计使用热变电阻做功率传感元件。热变电阻值的温度系数较大。被测信号的功率被热变电阻吸收后产生热量,使其自身温度升高,电阻值发生显著变化,利用电阻电桥测量电阻值的变化,显示功率值。
热电偶型功率计热电偶型功率计中的热偶结直接吸收高频信号功率,结点温度升高,产生温差电势,电势的大小正比于吸收的高频功率值。
量热式功率计典型的热效应功率计,利用隔热负载吸收高频信号功率,使负载的温度升高,再利用热电偶元件测量负载的温度变化量,根据产生的热量计算高频功率值。
晶体检波式功率计晶体二极管检波器将高频信号变换为低频或直流电信号。适当选择工作点,使检波器输出信号的幅度正比于高频信号的功率。
射频或微波功率计按被测信号连续性分类
有连续波功率计和脉冲峰值功率计。
4 技术指标
5 应用领域
光功率测量
用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
电气产品检试验
变频功率分析仪适用于电力推进、电机、风机、水泵、风力发电、轨道交通、电动汽车、变频器、特种变压器、荧光灯、LED照明等领域的产品检试验、能效评测及电能质量分析。
变频功率计的应用(7张)
6 注意事项
7 实际操作
对大多数从事电气方面工作的人员来说,功率表的使用并非难事。但真正做到正确使用功率表,即在准确度一定的情况下确保测量的精度及仪表的使用寿命又并非易事。以单相电动系功率表为例,就功率表的使用及使用中应注意的问题作一介绍。
1 要遵守“发电机端守则”
由电动系功率表的原理可知,功率表的转矩与流过表内线圈的电流方向有关,一旦其中一个线圈的电流方向改变,转矩方向也会改变。为此,在功率表两个线圈对应于电流流进的端钮上,都注有称为发电机端的“*”标志。功率表在接线时,应使电流或电压线圈带“*”标志的端钮接到电源同极性的端子上,以保证两线圈的电流方向都从发电机端流入。这就是功率表接线的“发电机端守则”。
2 合理选择电压线圈的前、后接方式
尽管电压线圈不论前接还是后接,功率表都能正偏,对于某些负载来说,测量的结果相差较小,这时两种接法采用哪种均可。但对于那些电阻(或阻抗)过大或过小的负载来说,两种接法所得结果相差较大,有时甚至出现与理论相矛盾的结果。
电压线圈前接方式
这种方式的接线,功率表电流线圈的电流虽然等于负载电流,但功率表电压支路两端电压却等于负载电压与功率表电流线圈的电压之和,在功率表读数中多了电流线圈的功率消耗。这种接线方式适用于负载电阻(或阻抗)远比功率表电流线圈电阻(或阻抗)大得多的情况,这样才能保证功率表本身的功率消耗对测量结果的影响比较小。
电压线圈后接方式
这种方式的接线,功率表电压支路两端的电压虽然等于负载电压,但电流线圈的电流却等于负载电流与功率表电压线圈支路电流之和,功率表读数中多了电压支路的功率消耗。因此,这种接线适用于负载电阻(或阻抗)远比功率表电压支路电阻(或阻抗)小得多的情况,这样才能保证功率表本身的功率消耗对测量结果的影响比较小
。