1 分类
漏电保护器可以按其保护功能、结构特征、安装方式、运行方式、极数和线数、动作灵敏度等分类,这里主要按其保护功能和用途分类进行叙述,一般可分为漏电保护继电器、漏电保护开关和漏电保护插座三种。
1.漏电保护继电器是指具有对漏电流检测和判断的功能,而不具有切断和接通主回路功能的漏电保护装置。漏电保护继电器由零序互感器、脱扣器和输出信号的辅助接点组成。它可与大电流的自动开关配合,作为低压电网的总保护或主干路的漏电、接地或绝缘监视保护。
当主回路有漏电流时,由于辅助接点和主回
漏电保护器
路开关的分离脱扣器串联成一回路,因此辅助接点接通分离脱扣器而断开空气开关、交流接触器等,使其掉闸,切断主回路。辅助接点也可以接通声、光信号装置,发出漏电报警信号,反映线路的绝缘状况。2.漏电保护开关是指不仅它与其它断路器一样可将主电路接通或断开,而且具有对漏电流检测和判断的功能,当主回路中发生漏电或绝缘破坏时,漏电保护开关可根据判断结果将主电路接通或断开的开关元件。它与熔断器、热继电器配合可构成功能完善的低压开关元件。
目前这种形式的漏电保护装置应用最为广泛,市场上的漏电保护开关根据功能常用的有以下几种类别:
(1)只具有漏电保护断电功能,使用时必须与熔断器、热继电器、过流继电器等保护元件配合。
(2)同时具有过载保护功能。
(3)同时具有过载、短路保护功能。
(4)同时具有短路保护功能。
(5)同时具有短路、过负荷、漏电、过压、欠压功能。
3.漏电保护插座是指具有对漏电电流检测和判断并能切断回路的电源插座。其额定电流一般为20A以下,漏电动作电流6~30mA,灵敏度较高,常用于手持式电动工具和移动式电气设备的保护及家庭、学校等民用场所。
2 历史发展
自从人类发明并使用电以来,电不仅能给人类带来了很多方便,也能给人类带来灭顶之灾。它可能烧坏电器,引起火灾,或者使人触电。如果有一种设备可以使人们安全地使用电,将会避免很多不必要的损失。所以在五花八门的电器接踵而来的同时,也诞生了各式各样的保护器。其中有一种是专门保护人的,称为漏电保护器。漏电保护器俗称漏电开关,是用于在电路或电器绝缘受损发生对地短路时防人身触电和电气火灾的保护电器,一般安装于每户配电箱的插座回路上和全楼总配电箱的电源进线上,后者专用于防电气火灾。
漏电保护器经历了一个漫长的发展历程,目前已为全世界普遍使用。
1930年在欧洲发明了电压动作型漏电保护器,用来防止电气设备因绝缘损坏而发生的触电事故。1960年出现了电流动作型漏电保护器。当前,世界上的电压动作型漏电保护器已被淘汰,而电流动作型漏电保护器已经成为漏电、触电保护的主要电气装置。
日本从1964年开始为防止建筑施工现场的触电事故而研制电压动作型漏电保护器,1966年从西德引进电磁式电流动作型漏电保护器,1976年开始生产集成电路的漏电保护器。
美国从1967年开始就使用了电流动作型漏电保护器,由于游泳池的触电事故导致重视漏电保护器的发展,而且一开始就要求使用漏电动作电流为5mA的漏电保护器。
我国从1966年开始研制电压动作型漏电保护器,1976年开始研制生产电磁式漏电保护器,1985年左右研制生产了集成电路的漏电保护器。
漏电保护器的推广应用是与制定使用标准、规程分不开的。美国的《美国国家电气法规》(NEC)1971年版规定,自1973年1月1日起对住宅和建筑工地必须设置漏电保护器。日本的《电气设备技术标准》和劳动省的《安全卫生规则》中规定,工作电压超过60V的电气设备在潮湿场所使用必须设置漏电保护器,在400V电路中必须全部设置漏电保护器。
我国在1981年原国家建工总局《关于加强劳动保护工作的决定》中规定,施工现场的电气设备必须设置漏电保护装置。1983年制定的GB3787—1983《手持电动工具的管理、使用、检查和维修安全技术规程》中规定,手持电动工具必须使用漏电保护器,1988年建设部制订的JGJ46—1988《施工现场临时用电安全技术规范》规定,用电建筑机械和手持电动工具必须设置漏电保护器,并要求在施工现场内实行包括总电源漏电保护在内的二级漏电保护。
3 特点
一是电网确有接地时,漏电保护器正常动作。在这种正常动作中,因电网老化、气候环境变化,电网产生接地点引起的动作占绝大多数,而因人身触电引起的动作则是极少数。可以想象,能够正常用电是人们的第一需求,为了防止发生概率极低的人身触电伤害而招致频繁的停电,影响正常生产和生活当然会造成人们的烦恼。
二是电网本来没有发生接地,而是漏电保护器在以下情况下可能产生误动:
1,由于漏电保护器是信号触发动作的,那么在其它电磁干扰下也会产生信号触发漏电保护器动作,形成误动。
2,当电源开关合闸送电时,会产生冲击信号造成漏电保护器误动。
3,多分支漏电之和可以造成越级误动。
4,中性线重复接地可能造成串流误动。
可见,由于漏电保护器在技术上就存在这些产生误动的可能性,会使漏电保护器的频动问题更加严重,更加复杂。
从技术原理上分析,漏电保护器也存在可能产生拒动的技术误区。
1,当中性线产生重复接地时,会使漏电保护器产生分流拒动,而中性线重复接地点是很难找到的。
2,当电源缺相,所缺相又正好是漏电保护器的工作电源时,会产生拒动。
由以上分析可以看出,漏电保护器在实际使用中发生的频动、拒动问题,既有客观环境和管理的原因,也有漏电保护器本身技术上的误区。尤其是使用漏电保护器要求电网中性点必须接地,而漏电保护器的技术误区大多与电网中性点接地有关:
其一,由于中性点接地,电网相线的支撑物常年承受相电压,因而支撑物被击穿,形成电网接地点,造成泄漏,引起漏电保护器频动。
其二,由于中性点接地,当相线偶尔接地时,会立即产生很大的泄漏电流,不仅增大电损,易引起火灾,更会加剧漏电保护器的频动。
其三,由于中性点接地,当人身触电时,会立即产生很大的电击流,对人的生命威胁非常大,即使有漏电保护器也是先遭电击,再动作保护,如果动作迟缓或失灵,后果会更加严重。
其四,由于中性点接地,电网对地分布电容接在回路中,会加大开关合闸时的对地冲击电流,造成误动。
其五,由于中性点已经接地,中性线发生重复接地很难被发现,中性线重复接地会使漏电保护器发生分流拒动和串流误动。
可见漏电保护器的确存在着技术误区,而且这些技术误区与电网中心点接地是密切相关的,而使用漏电保护器时,电网中心点又不能不接地,因此在漏电保护器的技术思路内解决其频动、拒动问题是不大可能的。
还需特别指出两点:
1. 当发生人体单相触电事故时(这种事故在触电事故中几率最高),即在漏电保护器负载侧接触一根相线(火线)时它能起到很好的保护作用。如果人体对地绝缘,此时触及一根相线一根零线时,漏电保护器就不能起到保护作用。
2. 由于漏电保护器的作用是防患于未然,电路工作正常时反映不出来它的重要,往往不易引起大家的重视。有的人在漏电保护器动作时不是认真地找原因,而是将漏电保护器短接或拆除,这是极其危险的,也是绝对不允许的。
4 主要结构
漏电保护器在反应触电和漏电保护方面具有高灵敏性和动作快速性,
电磁式漏电保护结构与原理
这是其他保护电器,如熔断器、自动开关等无法比拟的。自动开关和熔断器正常时要通过负荷电流,他们的动作保护值要避越正常负荷电流来整定,因此他们的主要作用是用来切断系统的相间短路故障(有的自动开关还具有过载保护功能)。而漏电保护器是利用系统的剩余电流反应和动作,正常运行时系统的剩余电流几乎为零,故它的动作整定值可以整定得很小(一般为mA级),当系统发生人身触电或设备外壳带电时,出现较大的剩余电流,漏电保护器则通过检测和处理这个剩余电流后可靠地动作,切断电源。电气设备漏电时,将呈现异常的电流或电压信号,漏电保护器通过检测、处理此异常电流或电压信号,促使执行机构动作。我们把根据故障电流动作的漏电保护器叫电流型漏电保护器,根据故障电压动作的漏电保护器叫电压型漏电保护器。由于电压型漏电保护器结构复杂,受外界干扰动作特性稳定性差,制造成本高,现已基本淘汰。国内外漏电保护器的研究和应用均以电流型漏电保护器为主导地位。
电流型漏电保护器是以电路中零序电流的一部分(通常称为残余电流)作为动作信号,且多以电子元件作为中间机构,灵敏度高,功能齐全,因此这种保护装置得到越来越广泛的应用。电流型漏电保护器的构成分四部分:
- 检测元件:检测元件可以说是一个零序电流互感器。被保护的相线、中性线穿过环形铁心,构成了互感器的一次线圈N1,缠绕在环形铁芯上的绕组构成了互感器的二次线圈N2,如果没有漏电发生,这时流过相线、中性线的电流向量和等于零,因此在N2上也不能产生相应的感应电动势。如果发生了漏电,相线、中性线的电流向量和不等于零,就使N2上产生感应电动势,这个信号就会被送到中间环节进行进一步的处理。
- 中间环节:中间环节通常包括放大器、比较器、脱扣器,当中间环节为电子式时,中间环节还要辅助电源来提供电子电路工作所需的电源。中间环节的作用就是对来自零序互感器的漏电信号进行放大和处理,并输出到执行机构。
- 执行机构:该结构用于接收中间环节的指令信号,实施动作,自动切断故障处的电源。
- 试验装置:由于漏电保护器是一个保护装置,因此应定期检查其是否完好、可靠。试验装置就是通过试验按钮和限流电阻的串联,模拟漏电路径,以检查装置能否正常动作。
5 工作原理
6 使用事项
(1) 漏电保护器适用于电源中性点直接接地或经过电阻、电抗接地的低压配电系统。 对于电源中性点不接地的系统,则不宜采用漏电保护器。 因为后者不能构成泄漏电气回路,即使发生了接地故障,产生了大于或等于漏电保护器的额定动作电流,该保护器也不能及时动作切断电源回路;或者依靠人体接能故障点去构成泄漏电气回路,促使漏电保护器动作,切断电源回路。 但是,这对人体仍不安全。 显而易见,必须具备接地装置的条件,电气设备发生漏电时,且漏电电流达到动作电流时,就能在0.1 秒内立即跳闸,切断了电源主回路。
(2) 漏电保护器保护线路的工作中性线N 要通过零序电流互感器。 否则,在接通后,就会有一个不平衡电流使漏电保护器产生误动作。
(3) 接零保护线(PE) 不准通过零序电流互感器。 因为保护线路(PE) 通过零序电流互感器时,漏电电流经PE 保护线又回穿过零序电流互感器,导致电流抵消,而互感器上检测不出漏电电流值。 在出现故障时,造成漏电保护器不动作,起不到保护作用。
(4) 控制回路的工作中性线不能进行重复接地。 一方面,重复接地时,在正常工作情况下,工作电流的一部分经由重复接地回到电源中性点,在电流互感器中会出现不平衡电流。 当不平衡电流达到一定值时,漏电保护器便产生误动作;另一方面,因故障漏电时,保护线上的漏电电流也可能穿过电流互感器的个性线回到电源中性点,抵消了互感器的漏电电流,而使保护器拒绝动作。
(5) 漏电保护器后面的工作中性线N 与保护线(PE) 不能合并为一体。 如果二者合并为一体时,当出现漏电故障或人体触电时,漏电电流经由电流互感器回流,结果又雷同于情况(3) ,造成漏电保护器拒绝动作。
(6) 被保护的用电设备与漏电保护器之间的各线互相不能碰接。 如果出现线间相碰或零线间相交接,会立刻破坏了零序平衡电流值,而引起漏电保护器误动作;另外,被保护的用电设备只能并联安装在漏电保护器之后,接线保证正确,也不许将用电设备接在实验按钮的接线处。