1 简介
目前国际上正在迅速发展的一种新型传感器称为成像光谱仪,它是以多路、连续并具有高光谱分辨率方式获取图像信息的仪器。通过将传统的空间成像技术与地物光谱技术有机地结合在一起,可以实现对同一地区同时获取几十个到几百个波段的地物反射光谱图像。
成像光谱仪基本上属于多光谱扫描仪,其构造与CCD线阵列推扫式扫描仪和多光谱扫描仪相同,区别仅在于通道数多,各通道的波段宽度很窄。
2 发展背景
70年代末80年代初,在研究归纳各种地物光谱特征的基础上,形成这样一个概念:如果能实现连续的窄波段成像,那么就有可能实现地面矿物的直接识别,由此产生了光谱和图像结合为一体的成像光谱技术。1983 年美国喷气推进实验室研制出第一台航空成像光谱仪(AIS-1),随后包括中国在内的许多国家都研制成功了一系列成像光谱仪,其中有以线阵探测器为基础的光机扫描型,有以面阵探测器为基础的固态推扫型,也有以面阵探测器加光机的并扫型。
3 分类
成像光谱仪按其结构的不同,可分为两种类型。一种是面阵探测器加推扫式扫描仪的成像光谱仪,它利用线阵列探测器进行扫描,利用色散元件和面阵探测器完成光谱扫描。利用线阵列探测器及其沿轨道方向的运动完成空间扫描。
带面阵的成像光谱仪
另一种是用线阵列探测器加光机扫描仪的成像光谱仪,它利用点探测器收集光谱信息,经色散元件后分成不同的波段,分别在线阵列探测器的不同元件上,通过点扫描镜在垂直于轨道方向的面内摆动以及沿轨道方向的运动完成空间扫描,而利用线探测器完成光谱扫描。
[1]
带线针的成像光谱仪
4 优点和缺点
成像光谱仪数据具有光谱分辨率极高的优点,同时由于数据量巨大,难以进行存储、检索和分析。为解决这一问题,必须对数据进行压缩处理,而且不能沿用常规少量波段遥感图像的二维结构表达方法。图像立方体就是适应成像光谱数据的表达而发展起来的一种新型的数据格式,它是类似扑克牌式的各光谱段图像的叠合。立方体正面的图像是一幅自己选择的三个波段图像合成,它是表示空间信息的二维图像,在其下面则是单波段图像叠合;位于立方体边缘的信息表达了各单波段图像最边缘各像元的地物辐射亮度的编码值或反射率,这种图像表示形式亦称为影像立方体。
从几何角度来说,成像光谱仪的成像方式与多光谱扫描仪相同,或与CCD线阵列传感器相似,因此,在几何处理时,可采用与多光谱扫描仪和CCD线阵列传感器数据类似的方法。但目前,成像光谱仪只注重提高光谱分辨率,其空间分辨率却较低(几十甚至几百米)。正是因为成像光谱仪可以得到波段宽度很窄的多波段图像数据,所以它多用于地物的光谱分析与识别上。特别是,由于目前成像光谱仪的工作波段为可见光、近红外和短波红外,因此对于特殊的矿产探测及海色调查是非常有效的,尤其是矿化蚀变岩在短波段具有诊断性光谱特征。
5 性能参数和原理
成像光谱仪主要性能参数是:(1)噪声等效反射率差(NEΔp ),体现为信噪比(SNR);(2)瞬时视场角(IFOV),体现为地面分辨率;(3)光谱分辨率,直观地表现为波段多少和波段谱宽。
高光谱分辨率遥感信息分析处理,集中于光谱维上进行图像信息的展开和定量分析,其图像处理模式的关键技术有:⑴超多维光谱图像信息的显示,如图像立方体的生成;⑵光谱重建,即成像光谱数据的定标、定量化和大气纠正模型与算法,依此实现成像光谱信息的图像-光谱转换;⑶光谱编码,尤其指光谱吸收位置、深度、对称性等光谱特征参数的算法;⑷基于光谱数据库的地物光谱匹配识别算法;⑸混合光谱分解模型;⑹基于光谱模型的地表生物物理化学过程与参数的识别和反演算法。
高端的成像光谱仪采用了透射型体相全息衍射光栅,其在可见光到近红外波段具有低杂散光、低吸收率特点;由于核心部分密封在玻璃或其它透明材质中,因此寿命长、容易清洁、抗刮檫,非常适合各种苛刻的野外的应用环境。
成像光谱仪工作方式主要为推扫式,为了实现扫描过程,一般利用外接扫描平台带动光谱仪运行;由于扫描平台比较笨重,且增加了耗电量,给野外工作带来诸多不便,所以现在最新型的成像光谱仪取消了扫描平台,改为内置式扫描设计,减轻了整机重量和能耗,而且可以直接进行垂直向下测量,更利于野外使用。