1 发展历史
1979年,芬兰Wallac公司研发部的Soini和Hemmila首次提出了建立稀土离子标记物的“时间分辨荧光免疫分析”理论。
1983年,Soini和Kojola首先开发出以镧系元素为示踪物的时间分辨荧光测量仪,建立了新的非放射性微量分析检测技术。同一年,Pettersson等人运用此仪器首次对人绒膜促性腺激素(hCG)进行了时间分辨荧光免疫分析。
1984年,Hemmila确定了DELFIA(解离增强镧系元素荧光免疫检测)这种时间分辨免疫分析技术方案,从而使DELFIA成为Wallac的专利技术。
1988年,加拿大CyberFluor公司的Diamandis创立了一种不同于DELFIA的时间分辨荧光免疫分析,即FIAgen(采用的是以Eu3+螯合物配基BCPDA为标记物,通过检测其与过量Eu3+形成的螯合物荧光进行定量)。
我国起步相对晚一些,在2003年,时间分辨荧光分析技术获得国家科技进步二等奖。
2 结构
以某型号时间分辨荧光免疫分析仪为例介绍仪器的基本组成,时间分辨荧光免疫分析仪由样本处理器和微孔板处理器组成。如图1所示。
图1 时间分辨荧光免疫分析仪
样本处理器包括样本传送装置、4根加样针和注射器、移液臂、稀释板条、样本架、质控品架、蠕动泵、探针清洗站等。如图2所示。
图2 样本处理器
微孔板处理器主要包括微孔板装载/卸载装置、微孔板传送装置、微孔板洗涤装置、增强液加样器、试剂架及加样装置、条形码扫描器、微孔板振荡器/孵育器等
[2]
。如图3所示。
图3 微孔板处理器
3 基本原理
时间分辨技术,即各种组织、蛋白或其他化合物在激发光的照射下都能发出一定波长的荧光,如血清蛋白可发射出短波长的荧光(激发光波长280nm,发射光波长320~350nm),胆红素发出波长较长的荧光(激发光波长330~360nm,发射光波长430~470nm),这些荧光为非特异性荧光,干扰了荧光免疫测定的灵敏度和特异性,但它们的荧光寿命一般在1~10ns,最长不超过20ns。而镧系元素的荧光寿命为10~100µs,时间分辨荧光免疫分析技术(time resolved fluorescence immunoassay,TRFIA)利用这一特征,待血清、溶剂和其它成分的短寿命背景荧光完全衰变后,再测量镧系元素的特异性荧光,有效地排除了非特异荧光的干扰,极大地提高了分析灵敏度
。
4 应用
时间分辨荧光免疫分析仪常用于蛋白质和多肽激素、半抗原、病原体抗原抗体、肿瘤标志物分析、干血斑样品、核酸及天然杀伤细胞的活力等方面的测定
。
5 优缺点
优点:使用镧系元素作为标记物,其在保证检测的灵敏度和特异性的基础上,通过时间分辨技术消除了背景荧光的干扰。检测多种抗原时可使用多种荧光素进行标记抗体,且灵敏度(标记物为Eu3+的检测灵敏度为10-18mol/well)和特异性均较高,较其他分析方法好。还有标准曲线剂量范围宽、自动化程度高、操作简便等许多优点。
缺点:试剂盒昂贵和易受内源性或外源性稀土离子的污染
。
6 注意事项
1. 使用环境:将仪器置于水平、稳固、洁净的地方。自然环境中稀土离子存在十分广泛,如空气灰尘和烟雾中,均有不同程度的含量,尤以北方地区为甚,所以应建立一个相对无尘的操作环境,防止器材、试剂和操作者在操作中不慎可能造成的污染。
2. 操作时按照实验室安全工作准则,戴手套穿工作服,不得戴首饰,以避免潜在的危险;在实验中应该注意用电安全,不得触及带电部分;标本及其他废弃物的处理应遵守实验室相关规定,注意生物安全。
3. 严格遵守操作规程,如仪器出现故障,立即向管理责任人或科室负责人报告,查明原因,及时处理,不得擅自“修理”,应登记“仪器设备使用登记”本。
4. 当仪器不处于STANDBY或关机状态时,不能触及加样针、搅拌棒等仪器运动部分。
5. 将血清标本吸入样品杯时,避免产生气泡或吸入凝块。
6. 铕标记物是提高灵敏度、降低非特异性结合的关键,受标记方法、抗体浓度、稀土元素或其螯合物质量及标记中带来不均一性影响,每批标记物质量都有一定的差异,因此不同批号标记物敏感性不一,不能混用,且每次测定都需作标准曲线。
7. 时间分辨荧光免疫分析技术的免疫反应与其他免疫反应的条件一样,易受pH、温度、时间等因素的影响。且TRFIA的免疫反应是在室温状态下不断振荡完成的,所以反应的室温等环境影响因素应严格控制。
8. TRFIA技术由于灵敏度极高,许多因素能够影响其准确度,因此在每一步的操作中都应严格按照操作规程进行操作
。