1 工作原理
自恢复保险丝,是由经过特殊处理的聚合树脂(Polymer)及分布,在里面的导电粒子(Carbon Black)组成。
在正常操作下,聚合树脂紧密地将导电粒子,束缚在结晶状的结构外,构成链状导电电通路,此时的自恢复保险丝为低阻状态(a),线路上流经自恢复保险丝的电流所产生的热能小,不会改变晶体结构。
当线路发生短路或过载时,流经自恢复保险丝的大电流,产生的热量使聚合树脂融化,体积迅速增长,形成高阻状态(b),工作电流迅速减小,从而对电路进行限制和保护。
当故障排除后,自恢复保险丝重新冷却结晶,体积收缩,导电粒子重新形成导电通路,自恢复保险丝恢复为低阻状态,从而完成对电路的保护,无须人工更换。
2 动作原理
自恢复保险丝的动作原理,是一种能量的动态平衡,流过自恢复保险丝的电流,由于电流热效应的关系,产生一定程度的热量(自恢复保险丝都存在阻值),产生的热全部或部分散发到环境中,而没有散发出去的热便会提高自恢复保险丝元件的温度。
正常工作时的温度较低,产生的热和散发的热达到平衡。
自恢复保险丝元件处于低阻状态,自恢复保险丝不动作,当流过自恢复保险丝元件的电流,增加或环境温度升高,但如果达到产生的热和散发的热的平衡时,自恢复保险丝仍不动作。
当电流或环境温度再提高时,自恢复保险丝会达到较高的温度。
若此时电流或环境温度,继续再增加,产生的热量,会大于散发出去的热量,使得自恢复保险丝元件温度骤增,在此阶段,很小的温度变化会造成阻值的大幅提高,这时自恢复保险丝元件处于高阻保护状态,阻抗的增加限制了电流,电流在很短时间内急剧下降,从而保护电路设备免受损坏,只要施加的电压所产生的热量足够自恢复保险丝元件散发出的热量,处于变化状态下的自恢复保险丝元件便可以一直处于动作状态(高阻)。
当施加的电压消失时,自恢复保险丝便可以自动恢复了。
3 选型
1、确定电路的以下参数:
a 最大工作环境温度
b 标准工作电流
c 最大工作电压(Umax)
d 最大故障电流(Imax)
2、选择能适应电路最大环境温度和标准工作电流的自恢复保险丝元件
使用温度折减{环境温度(℃)的工作电流(A)}表,并选择与电路最大环境温度最匹配的温度。
浏览该栏,以查阅等于或大于电路标准工作电流值。
3、将所选元件的最大电气额定值与电路最大工作电压和故障电流作比较
使用电气特性,来验证在第2步中,所选的元件,是否将采用电路的最大工作电压和故障电流。
查阅装置的最大工作电压和最大故障电流。
确保Umax和Imax,大于或等于电路的最大工作电压和最大故障电流。
4、确定动作时间
动作时间,是当故障电流出现在整台装置上时,将此元件切换到高电阻状态所用的时间量。
为了提供预期的保护功能,明确自恢复保险丝元件的工作时间是很重要的。
如果您选择的元件动作过快,则会出现异常动作或有害的动作。
如果元件动作过慢,则受到保护的组件在元件切换到高电阻状态之前可能损坏。
使用25℃的典型动作时间曲线来确定自恢复保险丝元件的动作时间对于电路来说是过快还是过慢。
如果是则返回第2步重新选择备用元件。
5、验证环境工作温度
自恢复保险丝环境温度电流值折减率表
确保应用场合的最小和最大环境温度,在自恢复保险丝元件的工作温度范围内。
大多数自恢复保险丝元件的工作温度范围,介于-40℃到85℃。
6、验证自恢复保险丝元件的外形尺寸
使用外形尺寸表,来将您选择的自恢复保险丝的外形尺寸与应用场合的空间条件比较。
4 技术标准
1、 额定零功率电阻
PPTC热敏电阻应按零功率电阻分档包装,并在外包装标明阻值范围。耐压、耐流能力测试后,每组样品中自身前的电阻变化率极差δ|Ri后-Ri前/Ri前-(Rj后-Rj前)/Rj前 |≤100%
2、 PTC效应
说一种材料具有PTC (Positive Temperature Coefficient) 效应, 即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有PTC效应。在这些材料中,PTC效应表现为电阻随温度增加而线性增加,这就是通常所说的线性PTC效应。
自恢复保险丝,PPTC
3、 非线性PTC效应
经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性PTC效应。相当多种类型的导电聚合体会呈现出这种效应,如高分子PTC热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。
4、 初始电阻 Rmin
在被安装到电路中之前,环境温度为25℃的条件下测试,自复保险丝系列的高分子PTC热敏电阻的阻值。
5、 Rmax
在室温条件下,自复保险丝系列高分子PTC热敏电阻动作或回流焊
自恢复保险丝插件
接安装到电路板中一小时后测得的最大电阻值。
6、 最小电阻(Rmin)/最大电阻(Rmax)
在指定环境温度下,例如:25℃,安装到电路之前特定型号的自复保险丝系列高分子热敏电阻的阻值会在规定的一个范围内,即在最小值(Rmin)和最大值(Rmax)之间。此值被列在规格书中的电阻栏里。
7、 维持电流 Ihold
维持电流是自复保险丝系列高分子PTC热敏电阻保持不动作情况下可以通过的最大电流。在限定环境条件下,装置可保持无限长的时间,而不会从低阻状态转变至高阻状态。
8、 动作电流 Itrip
在限定环境条件下,使自复保险丝系列高分子热敏电阻在限定的时间内动作的最小稳态电流。
9、 最大电流 Imax (耐流值)
在限定状态下, 自复保险丝系列高分子PTC热敏电阻安全动作的最大动作电流,即热敏电阻的耐流值。超过此值,热敏电阻有可能损坏,不能恢复。此值被列在规格书中的耐流值一栏里。
10、泄漏电流Ires
自复保险丝系列高分子PTC热敏电阻锁定在其高阻状态时,通过热敏电阻的电流。
11、最大工作电流/正常操作电流
在正常的操作条件下,流过电路的最大电流。在电路的最大环境工作温度下,用来保护电路的自复保险丝系列高分子PTC热敏电阻的维持电流一般来说比工作电流大。
12、动作
自复保险丝系列高分子PTC热敏电阻在过电流发生或环境温度增加时由低阻值向高阻值转变的过程。
13、动作时间
过电流发生开始至热敏电阻动作完成所需的时间。对任何特定的自复保险丝系列高分子PTC热敏电阻而言,流经电路的电流越大,或工作的环境温度越高,其动作时间越短。
14、Vmax 最大电压(耐压值)
在限定条件下, 自复保险丝系列高分子PTC热敏电阻动作时,能安全承受的最高电压。即热敏电阻的耐压值。超过此值,热敏电阻有可能被击穿,不能恢复。此值通常被列在规格书中的耐压值一栏里。
15、最大工作电压
在正常动作状态下,跨过自复保险丝系列高分子PTC热敏电阻两端的最大电压。在许多电路中,相当于电路中电源的电压。
16、导电聚合体
在此指由导电粒子(炭黑,碳纤维,金属粉末,金属氧化物等)填充绝缘的高分子材料(聚烯烃,环氧树脂等)而制得的导电复合材料。
17、环境温度
在热敏电阻或者一个联有热敏电阻元件的电路周围静止空气的温度。
18、工作温度范围
P元件可以安全工作的环境温度范围。
19、最大工作环境温度
预期元件可以安全工作的最高环境温度。
20、功率耗损
自复保险丝系列高分子PTC热敏电阻动作后所消耗的功率,通过计算流过热敏电阻的泄漏电流和跨过热敏电阻的电压的乘积得到。
21、高温,高湿老化
在室温下, 测量自复保险丝系列高分子PTC热敏电阻在较长时间(如150小时)处于较高温度(如85℃)及高湿度(如85% 湿度)状态前后的阻值的变化。
22、被动老化测试
室温下,测量自复保险丝系列高分子PTC热敏电阻长时间(如1000小时)处于较高温度(如70℃或85℃)状态前后的阻值变化。
23、冷热打击测试
在室温下,自复保险丝系列高分子PTC热敏电阻的阻值在温度循环前后的变化的测试结果。(例如,在-55℃及+125℃之间循环10次)。
24、PTC强度β
PTC热敏电阻具有足够的PTC强度且不能出现NTC现象。 β=lgR140°C/R室温≥5 R140°C、R室温 为140℃与室温时的额定零功率电阻值。
25、动作特性
PTC热敏电阻在耐压、耐流试验前、后都应进行不动作特性测试,并且,其中R为进行不动作特性试验时热敏电阻两端的U/I,Rn为额定零功率电阻初测值或复测值。
26、恢复时间
PTC热敏电阻动作后的恢复时间应不大于60S。
27、失效模式试验
在进行失效模式试验时,高聚PTC热敏电阻可能随试验或处于失效状态,允许的失效模式是开路或高阻状态,但整个试验过程中不得出现低阻态或起明火。
5 相关应用
6 分类
自恢复保险丝,根据材料可分为2种:1、聚合物高分子PPTC;2、陶瓷CPTC两种自恢复保险丝。
根据封装形式又可分为2种:1、引线插件;2、SMD贴片。还可以根据电压分为600V,250V,130V,120V,72V,60V,30V,24V,16V,6V等。
插件高分子聚合物自恢复保险丝
聚合物PPTC的主要优点有:常温零功率电阻可以作得很小,大电流产品只有几个毫欧姆,在路功耗较小,可以忽略不计、体积相对较小。
可串联在易损电路内作过流保护、温度保险丝用,阻值突变速度快,在几个ms数量级,热容小,恢复时间短,耐冲击,可循环保护达8000次之多。
PTC可以作过温度保险丝用,因此在电路中在一定程度上体现出了温度保险丝性能和温度保险丝作用。
达到在电路中实现过流保护和过温保护的双重保护功能。
陶瓷CPTC的主要优点为制造容易,相对价格便宜,但电阻大、体积大、在路损耗大,有几十至几千Ω范围,适宜作小电流过流保护,高温过热时易出现负阻效应(阻值变小)、保护速度慢,在上百ms的数量级、热容大,恢复时间长。
应用范围相对较窄,如不能应用于快速保护的电路、汽车线束保护、PCB线迹保护等,多应用于发热器件、在某些小信号回路,不需要考虑损耗的地方可以选用。
7 封装工艺
选择改性环氧树脂,作聚乙烯/炭黑自恢复保险丝的封装材料,研究了封装对保险丝热特性的影响,封装层影响芯料的散热能力,当通过电流足够大时,封装对保险丝的动作时间几乎没有影响。
当通过电流较小时,封装层在120℃(聚乙烯熔点)下固化的保险丝,由于封装层与芯料之间存在一定的空隙,芯料散热能力变差,且芯料的热膨胀可以顺利进行,动作时间变短。
因此,保险丝封装应在芯料达到最大热膨胀的温度下进行。
8 相关问题
1. 高分子PTC热敏电阻,主要应用于哪些方面?
高分子PTC热敏电阻可用于计算机及其外部设备、移动电话、电池组、远程通讯和网络装备、变压器、工业控制设备、汽车及其它电子产品中,起到过电流或过温保护作用。
2. 高分子PTC热敏电阻,与保险丝、双金属电路断路器,及陶瓷PTC热敏电阻的主要区别是什么?
1)与保险丝的差异
高分子PTC热敏电阻,是一种具有正温度系数特性的导电高分子材料,它与保险丝之间最显著的差异,就是前者可以多次重复使用。这两种产品都能提供过电流保护作用,但同一只高分子PTC热敏电阻能多次提供这种保护,而保险丝在提供过电流保护之后,就必须用另外一只进行替换。
2)与金属电路的差异
高分子PTC热敏电阻与双金属电路断路器的主要区别在于前者在事故未被排除以前一直出于关断状态而不会复位,但双金属电路断路器在事故仍然存在时自身就能复位,这就可能导致在复位时产生电磁波及火花。同时,在电路处于故障条件下重新接通电路可能损坏设备,因而不安全。高分子PTC热敏电阻能够一直保持高电阻状态直到排除故障。
3)与陶瓷PTC热敏电阻的差异
高分子PTC热敏电阻与陶瓷PTC热敏电阻的不同在于元件的初始阻值、动作时间(对事故事件的反应时间)以及尺寸大小的差别。具有相同维持电流的高分子PTC热敏电阻与陶瓷PTC热敏电阻相比,高分子PTC热敏电阻尺寸更小、阻值更低,同时反应更快。
3. 高分子PTC热敏电阻的工作原理是什么?
高分子PTC热敏电阻,是由填充炭黑颗粒的聚合物材料制成。这种材料具有一定导电能力,因而能够通过额定的电流。
如果通过热敏电阻的电流过高,它的发热功率大于散热功率,此时热敏电阻的温度将开始不断升高,同时热敏电阻中的聚合物基体开始膨胀,这使炭黑颗粒分离,并导致电阻上升,从而非常有效地降低了电路中的电流。
这时电路中仍有很小的电流通过,这个电流使热敏电阻维持足够温度从而保持在高电阻状态。当故障排除之后,高分子PTC热敏电阻很快冷却并将回复到原来的低电阻状态,这样又象一只新的热敏电阻一样可以重新工作了。
4. 怎样才能知道手中的产品或样品,是哪一种型号的高分子PTC热敏电阻?
大部分高分子PTC热敏电阻标有产品的规格或型号,在产品规格书中也列出了标准的产品标志。但有些标志只能被有识别能力的厂商或代理识别。
5. 高分子PTC热敏电阻的电阻值,在非断路状态时会改变吗?
高分子PTC热敏电阻的电阻值,随着工作环境的变化会略有改变,一般随着温度及电流的增加电阻值升高,反之降低。
6. 高分子PTC热敏电阻的存贮期多长?
如果存贮得当,高分子PTC热敏电阻的存贮期没有什么期限限制。
若暴露在过潮或过高温度下,一些规格产品性能可能会改变,比如锡铅的可焊性等,但是在正常的电器元件保存条件下可以长期保存。
7. 什么情况下高分子PTC热敏电阻可以复位?复位的速度有多快?
一般情况下只要除去加载在热敏电阻两端的电压,热敏电阻即可复位;但如果外界环境温度很高时(如150℃)热敏电阻不能复位。
高分子PTC热敏电阻回复到低电阻状态需要的时间取决于多种因素:产品的类型、装配形式、结构、外界温度、断路状态的持续时间等。一般复位时间小于几分钟,某些情况下只需几秒钟热敏电阻即可复位。
8. 高分子PTC热敏电阻是自动复位吗?
一旦排除故障和切断电源,热敏电阻即可复位,这时需要断开电路(维持电流)使热敏电阻冷却。
热敏电阻中聚合物集体材料因冷却收缩从而炭黑颗粒重新连接起来,使电阻降低。这与双金属片装置的自动复位不同。典型的双金属装置即使故障没有排除也能复位,这导致在故障状态和保护状态之间不停切换,这可能损坏设备。但高分子PTC热敏电阻会保持在高电阻状态直到故障排除。
9. 能清洗高分子PTC热敏电阻吗?
许多普通的电气元件清洗剂都可用来清洗该高分子PTC热敏电阻,但是一些清洗剂可能会损害热敏电阻的性能,清洗前最好进行试验或到我公司咨询。
10. 高分子PTC热敏电阻可以并联使用吗?
可以。这样的主要优点是可以降低电阻并提高维持电流。
11. 高分子PTC热敏电阻可以串联使用吗?
对多数使用来说这样没有什么好处,这样做是不实用的。因为总是有一个高分子PTC热敏电阻先断开,所以其它热敏电阻根本起不到额外的保护作用。
12. 压力对高分子PTC热敏电阻有何影响?
施加在热敏电阻上的压力可能影响产品的电性能。如果在热敏电阻切断电路时压力太大并限制了产品的膨胀,这将使热敏电阻失去特定的功能而损坏。应该注意不能将热敏电阻安装在限制其膨胀的地方。
13. 将高分子PTC热敏电阻封装起来有何影响?
一般说来我们并不主张对本公司的热敏电阻产品进行额外的封装。如果一定要进行封装的话则应该注意对封装材料的选择。如果封装材料太硬,则会阻碍热敏电阻的膨胀,从而影响热敏电阻的正常使用。即使使用“软”的密封材料,热敏电阻的散热性能也会受到影响。选型时应充分考虑封装对产品性能的影响,需要对产品进行封装时请向我公司咨询。
14. 高分子PTC热敏电阻的失效形式是什么?
高分子PTC热敏电阻典型失效形式是产品室温电阻变得太大,这时产品的维持电流将变小。为了获得UL认证,热敏电阻必须达到两个标准:(1)能断路6000次而仍具有PTC能力;(2)保持断路状态1000小时而仍具有PTC能力。如果热敏电阻在故障状态时超过了它的额定电压或电流,或者断路次数超出了UL检测要求,则热敏电阻可能变形和燃烧。
15. 在最大电压或断路电流下高分子PTC热敏电阻可以工作多少次?
每一个高分子PTC热敏电阻都有额定工作电压,在故障发生时可以承受额定的断路电流。为获得UL认证,开关必须能断路6000次并保持PTC性质。对用在通信设备(交换机、培训架保安单元等)中的热敏电阻来说,行标中规定了产品的使用寿命。这要求开关少则数十次,多则上百次能回复到初始特性值,设计者应牢记高分子PTC热敏电阻是用来防止故障的而不是将其断路状态象其正常状态一样使用。
16. 涂覆于高分子PTC热敏电阻上的组分是什么?
对B系列产品的封装材料为阻燃环氧树脂,对D、DL系列热敏电阻则为聚酯薄膜。这些材料符合UL94V-0或IEC95-2-2标准的要求。
17. 高分子PTC热敏电阻在使用时的最高环境温度是多少?
这取决于所使用的产品系列。我们的产品在大多数使用状态下的环境温度可达到85℃,对某些产品系列(如DL系列产品),只到70℃。对于表面贴装型的产品,可以短时间内承受焊锡焊接温度。在环境温度超过开关温度时,热敏电阻无法正常工作。
18. 电流超过维持电流IH但未达到动作电流IT会怎样?
维持电流IH是指在指定外界条件下能通过高分子PTC热敏电阻而不会导致其动作(变成高电阻断路状态)的最大稳定电流。动作电流IT是在指定条件下通过高分子PTC热敏电阻会导致其动作的最小稳定电流。
此时热敏电阻在不同情况可表现出不同的行为,这主要包括:环境温度、装配形式、热敏电阻的阻值等。因而热敏电阻可能保持低电阻状态,或者很快动作,也可能经过较长时间才动作。
在IH和IT之间的电流值可用一个区域表示,在这个区域与热敏电阻的开关状态有关,但电流数值范围不能确切预测。如果电流足够高,热敏电阻或者可能维持低电阻状态且保持这个低电流或者可能转变入高电阻状态,这取决于热敏电阻的初始电阻、外界环境以及装配条件。
19. IH和IT之间的关系是什么?为什么有差别?
我们大部分产品IT和IH之间是2:1的关系。一些产品可能低达1.7:1而另一些产品可能高达3:1。热敏电阻的材料、加工方式及焊接形式的不同决定了IT与IH的比值。我们大部分产品的实际比值为2:1。
20. Rmin、Rmax和Rl有什么不同?
在指定条件下(例如:20℃),使用前特定型号热敏电阻的电阻值在规定的一个范围内,即在最小值(Rmin)和最大值(Rmax)之间。高分子PTC热敏电阻在室温下动作结束1小时后的电阻最大值或焊接到电路板一小时后的电阻值为Rl。
21. 高分子PTC热敏电阻动作结束后1小时,复位的电阻是多少?
应低于热敏电阻的Rl。
22. 高分子PTC热敏电阻在断路状态的电阻是多少?
高分子PTC热敏电阻在断路状态下的电阻取决于以下因素:使用的产品规格、通过产品的电压及电流。电阻值可用以下公式求出:Rt=V2/Pd。
23. 高分子PTC热敏电阻在动作状态下的工作寿命是多少?
UL认证要求热敏电阻产品在失去PTC特性前能保持1000小时的断路状态。在低于产品最高额定电压和电流的情况下可保持更长时间的断路状态。长时间处于断路状态可能会导致热敏电阻在复位后不能回复其初始电阻值和其它一些初始特性。每个热敏电阻的回复程度主要取决于故障条件和产品规格。
24. 高分子PTC热敏电阻的电压降是多少?
这取决于所使用的产品规格。如果知道该种规格热敏电阻的电阻值和稳定工作状态下通过的电流,电压降一般是可以计算的。典型的电压降数值可由Rmax值求出,如果没有Rmax值,该电压降值为Rmin和Rl的平均值。若用Iop表示正常工作电流,Rp表示高分子PTC热敏电阻的电阻,则电路的电压降Vdrop可由公式:Vdrop=Iop×Rp求出。
25. 高分子PTC热敏电阻是否可以与过电压保护装置一起工作?
在远程通讯应用中,高分子PTC热敏电阻多数与过电压保护装置并用。这些过电压保护装置,包括固体放电管、气体放电管、MOV、二极管等,可以对雷电、高频感应、电力线搭接等产生的高压进行保护,而高分子PTC热敏电阻则对产生的过流进行保护。
26、高聚物过流保护元件是自动复位吗?
只要排除故障和切断电源,高聚物过流保护元件即可复位。但这时需要断开电路使过流保护元件冷却,以保证器件内聚合物与导电材料自动恢复到正常状态。
27、对高聚物过流保护元件施加压力有何影响?
对高聚物过流保护元件施加压力可能影响产品的电性能。对工作状态下的过流保护元件施加压力太大并限制了产品的膨胀,将使其推动特定的功能而被损坏。应该避免将过流保护元件安装在限制其膨胀的地方。
28、封装高聚物过流保护元件会有何影响?
通常情况,一般不要对高聚物过流保护元件进行额外的封装。如果一定要封装,则应该新学说坚封装材料的选择。封装材料太硬,会阻碍过流保护元件的膨胀,软的密封材料,也会影响过流保护元件的散热效果。所以选型时应充分考虑封装对产品性能的影响,需要时请向我公司咨询。