1 理论
电磁光谱的红外部分根据其同可见光谱的关系,可分为近红外光、中红外光和远红外光。 远红外光(大约400-10 cm-1)同微波毗邻,能量低,可以用于旋转光谱学。中红外光(大约4000-400 cm-1)可以用来研究基础震动和相关的旋转-震动结构。更高能量的近红外光(14000-4000 cm-1)可以激发泛音和谐波震动。红外光谱法的工作原理是由于震动能级不同,化学键具有不同的频率。共振频率或者振动频率取决于分子等势面的形状、原子质量、和最终的相关振动耦合。为使分子的振动模式在红外活跃,必须存在永久双极子的改变。具体的,在波恩-奥本海默和谐振子近似中,例如,当对应于电子基态的分子哈密顿量能被分子几何结构的平衡态附近的谐振子近似时,分子电子能量基态的势面决定的固有振荡模,决定了共振频率。然而,共振频率经过一次近似后同键的强度和键两头的原子质量联系起来。这样,振动频率可以和特定的键型联系起来。简单的双原子分子只有一种键,那就是伸缩。更复杂的分子可能会有许多键,并且振动可能会共轭出现,导致某种特征频率的红外吸收可以和化学组联系起来。常在有机化合物中发现的CH2组,可以以 “对称和非对称伸缩”、“剪刀式摆动”、“左右摇摆”、“上下摇摆”和“扭摆”六种方式振动。
2 原理
傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入
红外光谱仪原理图
到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。3 分类
一般分为两类,一种是光栅扫描的,很少使用;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是最广泛使用的。 光栅扫描的是利用分光镜将检测光(红外光)分成两束,一束作为参考光,一束作为探测光照射样品,再利用光栅和单色仪将红外光的波长分开,扫描并检测逐个波长的强度,最后整合成一张谱图。 傅立叶变换红外光谱是利用迈克尔逊干涉仪将检测光(红外光)分成两束,在动镜和定镜上反射回分束器上,这两束光是宽带的相干光,会发生干涉。相干的红外光照射到样品上,经检测器采集,获得含有样品信息的红外干涉图数据,经过计算机对数据进行傅立叶变换后,得到样品的红外光谱图。傅立叶变换红外光谱具有扫描速率快,分辨率高,稳定的可重复性等特点,被广泛使用。
4 应用
应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。
人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。
当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。
使用红外光谱仪对材料进行定性分析,广泛应用于各大、专院校,科研院所及厂矿企业。常见具备红外光谱仪检测能力的机构有:四川大学、西南交通大学、中蓝晨光化工研究院、华通特种工程塑料研究中心等。
进行化合物的鉴定 进行未知化合物的结构分析
进行化合物的定量分析 进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究
工业流程与大气污染的连续检测
在煤炭行业对游离二氧化硅的监测
卫生检疫,制药,食品,环保,公安,石油, 化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测
水晶石英羟基的测量 聚合物的成分分析 药物分析......
5 特点
1、 只需三个分束器即可覆盖从紫外到远红外的区段;
2、 专利干涉仪,连续动态调整,稳定性极高;
3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;
4、 智能附件即插即用,自动识别,仪器参数自动调整;
5、 光学台一体化设计,主部件对针定位,无需调整。
6 应用领域
进行化合物的鉴定 进行未知化合物的结构分析
进行化合物的定量分析 进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究
工业流程与大气污染的连续检测
在煤炭行业对游离二氧化硅的监测
卫生检疫,制药,食品,环保,公安,石油, 化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测
水晶石英羟基的测量 聚合物的成分分析 药物分析......