1 概述
离子传感器是利用离子选择电极,将感受的离子量转换成可用输出信号的传感器。离子传感器是溶液中特定离子浓度(活性)经选择计测而得的物质,自开发以来至今已有20年了,在一切科学领域中都占有极其重要的地位。近年来由于半导体集成化技术的发展,离子传感器也在朝着多样化、智能遥测化方向前进。
2 作用
离子传感器已广泛应用于工厂排水自动计测和河水监测的环境卫生领域,或用于工厂生产溶液的自动监控、实验室日常分析等用途。今后,对临床检查和体内埋入型传感器的应用寄予很大的期望。为适应这些需要,虽已有初步的研究,但是灵敏度和选择性的改进,进而耐久性的提高都是不可缺少的。
3 基本原理
离子传感器是离子识别。即利用固定在敏感膜上的离子识别材料有选择性地结合被传感的离子,从而发生膜电位或膜电流的改变。离子选择性电极(ISE)是常见的离子传感器。
4 分类
离子传感器技术的进步取决于敏感膜与换能器,因此离子传感器的分类通常是根据敏感膜的种类和换能器的类型来划分的。 根据敏感膜的种类划分:玻璃膜式离子传感器、液态膜式高于传感器、固态膜式离子传感器、以离子传感器为基本体的隔膜式传感器。
根据换能器的类型划分:电极型离子传感器、场效应晶体管型离子传感器、光导传感型离子传感器、声表面波型离子传感器。
5 相关特性
膜材料尤其是感应物质的性质对离子传感器特性有极其密切的关系。至今关于离子传感器的研究,全部集中在特性优异的离子传感器膜材料有哪些优点上,首先在玻璃膜离子传感器方面,由玻璃组分变化而得的传感器对氢离子有选择性,或对碱金属离子有选择性。也就是说,如增加玻璃中氧化铝和氧化硼的含量,就成为由碱金属离子引起感应性的玻璃膜。由于PH测定用的玻璃电极不适用于含氟化物溶液的PH值,因此正在开发以阳离子交换膜作感应膜的氢离子传感器。
难溶性盐膜离子传感器使用各种银盐和硫化物。例如卤素离子传感器使用卤化银和硫化银,而卤化银与硫化银的混合比影响感应膜的电阻值、光电效应和膜硬度,结果将会使传感器灵敏度和线性响应范围改变。应该特别指出,这种难溶性盐的制备方法对传感器特性是一个很大的影响因素。在用沉淀法制取备时,可在银盐溶液中加入卤素,或用相反的方法沉淀或用同时沉淀法制取混合银盐等等都是极其重要的。即使是重金属离子传感器情况,也建议用金属粉与硫粉的混合物在硫化氢气流中加热的方法。可以说,当然也能得到金属硫化物溶度低、灵敏度高的传感器。
离子变换膜传感器使用高分子量的季按盐和金属鳌合物,用这些在离解状态下成为1价阳离子的物质制取与测试对象的阳离子稳定的离子对化合物。这里如生成的离子对化合物是稳定的,就能得到灵敏度高的传感器。所以通常说,感应物质分子量越高,传感器灵敏度也就越高。但是,感应物质不仅影响传感器特性,而且还对作为膜其余组成材料的溶剂性质也有强烈的影响。离子交换膜传感器中,膜固体化的传感器特性与液体膜传感器特性基本相同,然而必须充分注意膜固体化材料的选择。使用最广的是聚氯乙烯(PVC),但由于感应物质的种类不同,其与PVC混合性差的,膜的固化就不充分,传感器特性也就不佳。作者用日本美术工艺品用的漆作膜固体化材料进行研究。漆与感应物质的混合性很好,对传感器耐久性的提高尤为有利。
中性载体膜离子传感器的特性与用作感应物质的冠醚等的特性有关。较早使用的氨酸霉菌素是优良的钾离子感应物质,并据最近研究,双冠醚化合物对碱金属离子传感器特性的改进显然有效。其理由是因为双冠醚北合物形成与碱金属离子稳定的化合物。
气透膜离子传感器根据气透膜孔径和厚度确定气体的选择性。
ISFET的特性主要受FET栅离子感应膜特性支配,但离子感应膜与栅表面的粘着性也很大程度上决定ISFET的特性。所以,探索粘附性好的膜材料或改进黏着方法,对传感器特性改进都是必要的。
酵素膜传感器特性方面的最大课题是提高耐久性,在这一情况下,酵素本身的特性不及将酵素不失其功能地在膜中固定化的技术方面来得重要。为此在各种固定化方法上下功夫,这在葡萄糖传感器方面虽已有相当进展,然而全面看来还不能说耐久性是足够的。