1 发展
近十年发展起来的甚长基线干涉仪可用来进行多种天体测量工作。它受大气的影响较小,对遥远的河外射电源的定位精度可达千分之几角秒,用以建立天文惯性参考系。它还可精确测量银河系射电天体的距离。此外,利用射电源还能精密测定地球自转、纬度以及两个相隔数千公里的测站之间位置的微小变化,为研究天文地球动力学提供实测资料。
2 历史
天体测量仪器已有近两千年的历史,自十七世纪采用望远镜后,测量精度显着提高。十九世纪发展起来的照相天体测量方法,能够精密测定大量恒星的位置和自行。二十世纪五十年代以后,代替人眼瞄准星像的光电记录法得到较普遍的应用。近年来,光电自动跟踪星像、光子计数、数字滤波、电子计算机等新技术的应用使天体测量仪器日趋自动化。随着仪器设计和制造技术的进步,光学仪器本身的误差已小于大气反常折射所引入的测角误差。各种优良的光学天体测量仪器几乎都只达到同样的观测精度(对一颗星进行一分钟的定位观测,其精度约为0奖1),因为它们都受到从镜筒内起直至高空各层大气反常折射的限制。如在地球大气外进行空间天体测量则可获得高十倍以上的精度。
3 外因
当前的记时技术已较完善,大气对光程的影响不大,所以,激光测量人造卫星或月球的距离可以达到误差仅几厘米的高精度。