1 历史发展
1963年Fennel厂研制出了编码经纬仪,加上20世纪40年代已经出现的电磁波测距技术和光电技术、计算机技术和精密机械的发展,到80年代已开始普遍使用电子测角和电子测距技术。然而,到80年代末水准测量还在使用传统光学仪器。这是由于水准仪和水准标尺不仅在空间上是分离的,而且两者的距离可以从1m多变化到100m,因此,在技术上造成了实现数字化读数的困难。
为了现实水准仪读数的数字化,人们进行了近30年的尝试,如蔡司厂的RENl 002A已使测微器读数能自动完成,但粗读数还需人工读出并按键输入,与精读数一起存入存储器,因此还算不上真正的电子水准仪;又如利用激光扫乎仪和带探测的水准标尺,可以使读数由标尺自动记录,由于这种试验结果还不能达到精密几何水准测量的要求,因此也没有解决水准测量读数自动化的难题。
直到1990年威特厂首先研制出数字水准仪NA2000。可以说,从1990年起,大地测量仪器已经完成了从精密光机仪器向光机电测一体化的高技术产品的过渡,攻克了大地测量仪器中水准仪数字化读数的这一最后难关。
到1994年蔡司厂研制出了电子水准仪DiNi 10/20,同年拓普康厂也研制出了电子水准仪DL-101/102,随后拓普康厂又研制出带PCMClA卡槽的DL-101C/102C,索佳(SOK-KIA)研制了新型数字水准仪POWERLEVEL SDL 30。这意味着电子水准仪也将普及,但就其精度与稳定性电子水准仪是否能与光学水准仪相提并论,则有待实践进一步证明。GPS技术只能确定大地高,大地高换算成工程上实用的正高,还需要知道高程异常,确定高程异常还少不了精密水准测量。这也是各厂家努力开发电子水准仪的原因之一。
2 仪器简介
目前,电子水准仪的照准标尺和调焦仍需目视进行。人工调试后,标尺条码一方面被成像在望远镜分化板上,供目视观测,另一方面通过望远镜的分光镜,又被成像在光电传感器(又称探测器)上,供电子读数。由于各厂家标尺编码的条码图案各不相同,因此条码标尺一般不能互通使用。当使用传统水准标尺进行测量时,电子水准仪也可以像普通自动安平水准仪一样使用,不过这时的测量精度低于电子测量的精度,特别是精密电子水准仪,由于没有光学测微器,当成普通自动安平水准仪使用时,其精度更低。
3 测量原理
此仪器利用近代电子工程学原理由传感器识别条形码水准尺上的条形码分画,经信息转换处理获得观测值,并以数字形式显示在显示窗口上或存储在处理器内。仪器的结构如图所示,仪器带自动安平补偿器,补偿范围为±12'。与仪器配套的水准尺为条纹编码尺——玻璃纤维塑料或钢尺。水准标尺为双面分画三段折接式,每段长度为1.35m,标尺总长为4.05m,其分画形式为条纹码和厘米分画。条纹码分画供电子水准仪观测时电子扫描用,标尺另一面的厘米分画可供光学水准仪观测时使用。
观测时,经自动调焦和自动整平后,水准尺条纹码分画影像映射到分光镜上,并将它分为两部分,一部分是可见光,通过十字丝和目镜,供照准用;另一部分是红外光射向探测器,并将望远镜接收到的光图像信息转换成电影像信号,并传输给信息处理器,与机内原有的关于水准尺的条纹码本源信息进行相关处理,于是就得出水准尺上水平视线处的读数。
使用电子水准仪测量既方便又准确,实现了水准测量自动化。近几年来徕卡公司又推出了更精密的数字水准仪NA3000,其观测精度更高。下图是NA2002、NA3003的测量原理示意图。
[4]
4 工作原理
作为一种新型的电子水准仪,它改变了传统的野外高差测量靠人工读数和手工记录的现实。电子水准仪采用REC模块存储数据和信息,将模块插入水准仪的插槽中,自动记录外业观测数据,用GIF 10或GIF 12阅读器读取内容并与外设(计算机、打印机)进行数据交换。
5 使用方法
1)安置仪器:电子水准仪的安置同光学水准仪。
2)整平:旋动脚螺旋使圆水准盒气泡居中。
3)输人测站参数:输入测站高程。
4)观测:将望远镜对准条纹水准尺,按仪器上的测量键。
5)读数:直接从显示窗中读取高差和高程。此外,还可获取距离等其它数据。