原子力显微镜编辑

日期:2020-01-09     浏览:208    
0原子力显微镜简介
原子力显微镜(Atomic Force Microscopy,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。
中文名
原子力显微镜
外文名
Atomic Force Microscopy
缩    写
AFM
类    型
分析仪器
1原子力显微镜简介
生物型原子力显微镜 生物型原子力显微镜
它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。
2原子力显微镜原理
3原子力显微镜优缺点
4原子力显微镜仪器结构
在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。
5原子力显微镜工作模式
原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下3种操作模式:接触模式(contact mode) ,非接触模式( non - contact mode) 和敲击模式( tapping mode)。
6原子力显微镜对样品的要求
原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中最常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片最好要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时需要导电性能良好的载体,如石墨或镀有金属的基片。
试样的厚度,包括试样台的厚度,最大为10 mm。如果试样过重,有时会影响Scanner的动作,请不要放过重的试样。试样的大小以不大于试样台的大小(直径20 mm)为大致的标准。稍微大一点也没问题。但是,最大值约为40 mm。如果未固定好就进行测量可能产生移位。请固定好后再测定。
7原子力显微镜应用
随着科学技术的发展,生命科学开始向定量科学方向发展。大部分实验的研究重点已经变成生物大分子,特别是核酸和蛋白质的结构及其相关功能的关系。因为AFM的工作范围很宽,可以在自然状态(空气或者液体)下对生物医学样品直接进行成像,分辨率也很高。因此,AFM已成为研究生物医学样品和生物大分子的重要工具之一。AFM应用主要包括三个方面:生物细胞的表面形态观测;生物大分子的结构及其他性质的观测研究;生物分子之间力谱曲线的观测。
AFM对生物细胞的表面形态观察
AFM可以用来对细胞进行形态学观察,并进行图像的分析。通过观察细胞表面形态和三维结构,可以获得细胞的表面积、厚度、宽度和体积等的量化参数等。例如,利用AFM可以对感染病毒后的细胞表面形态的改变、造骨细胞在加入底物(钴铬、钛、钛钒等)后细胞形态和细胞弹性的变化、GTP对胰腺外分泌细胞囊泡高度的影响进行研究。利用AFM还可以对自由基损伤的红细胞膜表面精细结构的研究,直接观察到自由基损伤,以及加女贞子保护作用后,对红细胞膜分子形态学的影响。
生物大分子的结构及其他性质的观测研究
2.1 蛋白质
对于蛋白质,AFM的出现极大的推动了其研究进展。AFM可以观察一些常见的蛋白质,诸如白蛋白,血红蛋白,胰岛素及分子马达和噬菌调理素吸附在图同固体界面上的行为,对于了解生物相溶性,体外细胞的生长,蛋白质的纯化,膜中毒有很大帮助。例如,Dufrene 等利用AFM 考察了吸附在高分子支撑材料表面上的胶原蛋白的组装行为。结合X-射线光电子能谱技术和辐射标记技术,他们提出了一个定性解释其层状结构的几何模型。AFM 实验证实了胶原蛋白组装有时连续,有时不连续的性质,通过形貌图也提供了胶原蛋白纤维状结构特征。Quist等利用AFM 研究了白蛋白和猪胰岛素在云母基底上的吸附行为,根据AFM 图上不同尺寸的小丘状物质推测,蛋白质有时发生聚集,有时分散分布。Epand 等则利用AFM 技术研究了一类感冒病毒的红血球凝集素,首次展示了一种膜溶原蛋白自组装形成病毒折叠蛋白分子外域的实时过程。
在AFM 观察包裹有紫膜的噬菌调理素蛋白(BR) 的研究中,AFM 仪器的改进,检测技术的提高和制样技术的完善得到了集中的体现。在细胞中,分子马达可以将化学能转变为机械运动,防止因为布朗运动导致的细胞中具有方向性的活动出现错误,这些活动包括:肌浆球蛋白,运动蛋白,动力蛋白,螺旋酶,DNA 聚合酶和RNA 聚合酶等分子马达蛋白的共同特点是沿着一条线性轨道执行一些与生命活动息息相关的功能,比如肌肉的收缩,细胞的分化过程中染色体的隔离,不同细胞间的细胞器的置换以及基因信息的解码和复制等。由于分子马达本身的微型化,它们容易受更高的热能和大的波动的影响,了解马达分子如何正常有序工作就成为一项具有挑战性的任务。利用AFM,人们已经知道了肌动蛋白结合蛋白的结构信息和细胞运动过程中肌动蛋白骨架调控功能。
2.2 脱氧核糖核酸(DNA)
AFM液相成像技术的优点在于消除了毛细作用力,针尖粘滞力,更重要的是可以在接近生理条件下考察DNA 的单分子行为。DNA 分子在缓冲溶液或水溶液中与基底结合不紧密,是液相AFM面临的主要困难之一。硅烷化试剂,如3-氨丙基三乙氧基硅烷(APTES)和阳离子磷脂双层修饰的云母基底固定DNA 分子,再在缓冲液中利用AFM 成像,可以解决这一难题。在气相条件下阳离子参与DNA的沉积已经发展十分成熟,适于AFM 观察。在液相条件下,APTES 修饰的云母基底较常用。目前DNA的许多构象诸如弯曲,超螺旋,小环结构,三链螺旋结构,DNA 三通接点构象,DNA 复制和重组的中间体构象,分子开关结构和药物分子插入到DNA 链中的相互作用都广泛地被AFM考察,获得了许多新的理解。
2.3 核糖核酸( RNA)
AFM对RNA的研究还不是很多。结晶的转运RNA 和单链病毒RNA 以及寡聚Poly (A) 的单链RNA 分子的AFM 图像已经被获得。因为在于不同的缓冲条件下,单链RNA 的结构变化十分复杂,所以单链RNA 分子的图像不容易采集。(利用AFM成像RNA分子需要对样品进行特殊和复杂的处理。Bayburt 等借鉴Ni2 + 固定DNA 的方法在缓冲条件下获得了单链Pre-m RNA 分子的AFM 图像。他们的做法如下: (1) 用酸处理被Ni2 + 修饰的云母基底以增加结合力; (2) RNA 分子在70℃退火,慢慢将其冷却至室温再滴加在用酸处理过的Ni2 +-云母基底上。采用AFM 单分子力谱技术,在Mg2 + 存在的溶液中,Liphardt 等研究了形貌多变的RNA 分子的机械去折叠过程,发现了从发夹结构到三螺旋连接体这些RNA 分子三级结构的过渡态。随后他们又利用RNA 分子证实了可逆非平衡功函和可逆平衡自由能在热力学上的等效性。)
2.4 核酸与蛋白质复合物( Nuclearacids-Protein Complex)
DNA 和蛋白质分子的特定相互作用在分子生物学中起着关键作用。蛋白质与DNA 结合的精确位点图谱和不同细胞状态下结合位点的测定对于了解复杂细胞体系的功能与机理,特别是基因表达的控制都十分关键。AFM 作为一种高度分辨达0。1 nm,宽度分辨率为2 nm 左右的表面分析技术,已广泛地用于表征各类DNA-蛋白质的复合物。低湿度大气条件下,Rees 等利用AFM 在接触模式下考察了λ2PL 启动子在启动和关闭转录过程中对DNA 链弯曲程度的影响。此外,这个小组还研究了另外一种λ2转录因子,Cro-蛋白对DNA 弯曲的影响。为了研究Jun 蛋白的结合是否会引起DNA 链的弯曲,Becker等利用AFM研究了包含一个AP21 结合位点的线性化质粒DNA 与Jun 蛋白的复合物。Aizawa小组对DNA 蛋白激酶Ku 亚结构域和双链DNA断裂的相关性进行了研究。Kasas 等研究了大肠杆菌RNA 聚合酶(RNAP) 转录过程中的动态酶活性。他们的方法是在Zn2 + 存在的条件下,RNAP 能够松散或紧密地与DNA 模板进行结合,通过AFM 成像了解其动态过程。
2.5 细胞( Cell)
AFM 不仅能够提供超光学极限的细胞结构图像,还能够探测细胞的微机械特性,利用AFM 力-曲线技术甚至能够实时地检测细胞动力学和细胞运动过程。利用AFM 研究细胞很少用样品预处理,尤其是能够在近生理条件下对它们进行研究。
利用AFM 直接成像方法,可以对固定的活细胞和亚细胞结构进行了深入研究。这些研究获得了关于细胞器的构造,细胞膜和细胞骨架更详细的信息。将细胞固定在基底上再进行AFM 观察,可以得到细胞膜结构的皱褶,层状脂肪物,微端丝和微绒毛等特征。由于细胞质膜掩盖了细胞内部骨架,现在已经发展了一种仔细剥离该层膜的方法,并利用AFM 对剥离细胞膜后的结构进行了研究。
AFM 在细胞研究方面的一个最重要用途是对活细胞的动力学过程,细胞间的相互作用以及细胞对其内外干扰因素的响应进行实时成像目前,AFM已经可以对外来病毒感染的细胞进行实时考察。AFM还可以研究活性状态下血小板形状的变化情况和培养的胰腺细胞对淀粉消化酶的响应情况。
2.6病毒( Virus)
早期,AFM 在生物学上的应用主要集中在病毒研究。Kolbe 等首次研究了具有不同头尾结构的T4 噬菌体。Imai 及其合作者分别对烟草花叶病毒和各类噬菌体进行了考察。烟草花叶病毒( TMV) 或星形烟草花叶病毒(STMV) 是迄今研究得最多的病毒类型。在胶体溶液中,TMV非常类似已知的蛋白质行为,可以采用研究蛋白质的方法对其进行考察。利用AFM,可以研究高度过饱和和轻微过饱和条件下TMV的二维成核生长过程。AFM研究表明,当TYMV 暴露在平衡条件下的溶液中,TYMV 晶体的(101) 面逐层向上生长,晶格的结构缺陷如空位,单粒子,位错和聚集等现象在AFM 图上区分得十分清楚。Turner 等利用从AIDS 病毒中提取的逆转录酶修饰AFM横梁,使之成为一种能检测抑制酶的活力和筛选使AIDS 病毒失活药物的方法。自支撑磷脂膜与感冒病毒结合作用以及缺陷位点结构上底物暴露的磷脂单层效应和水合双层磷脂的检测被发展成了一种新型生物传感器,这种传感器能够从其它大分子中识别特定的病毒物质。这些结果都被AFM 图像所证实。
生物分子间力谱曲线的观测
对生物分子表面的各种相互作用力进行测量,是AFM的一个十分重要的功能。这对于了解生物分子的结构和物理特性是非常有意义的。因为这种作用力决定两种分子的相互吸引或者排斥,接近或者离开,化学键的形成或者断裂,生物分子立体构像的维持或者改变等等。在分子间作用力的支配下,还同时支配着生物体内的各种生理现象、生化现象、药物药理现象,以及离子通道的开放或关闭,受体与配体的结合或去结合,酶功能的激活或抑制等等。因此,生物分子间作用力的研究,在某种意义上说,就是对生命体功能活动中最根本原理的研究。这也为人们理解生命原理,提供了一个新的研究手段和工具。
将两种分子分别固定于AFM的基底和探针尖端上。然后使带有一种分子的探针尖端在垂直方向上不断地接近和离开基底上的另一种分子。这时,两种分子间的相互作用力,就是二者间的相对距离的函数。这种力与距离间的函数关系曲线,称之为力谱曲线。
利用AFM获得的力谱曲线在生物医学中的应用:在探测一个细胞之后,根据所遇到的阻力,AFM就会赋予一个表明细胞柔软度的数值。研究人员发现,尽管正常细胞的硬度各有不同,但癌细胞比正常细胞要柔软得多,所研究的胰腺、肺部和乳腺细胞均是如此。一些肿瘤的细胞可能比另外一些更为坚硬,那就意味着这些肿瘤恶化转移的可能性较小,对病人的威胁也较小。利用AFM还可以研究不同药物对癌细胞的影响。针对细胞用药后,AFM可以观察在药物的作用下细胞的变化情况。这样可以开发出比当前所用的药物毒性更小、但同样能够阻止正常细胞发生癌变的药物,以免因癌症扩散而危及生命。
 
更多>同类百科
免责声明
1.本网中刊登的文章、数据的版权仅归原作者所有,原创文章由中实仪信网编辑整合,转载请注明中实仪信网出处。
2.转载其它媒体的文章,我们会尽可能注明出处,但不排除来源不明的情况。网站刊登文章是出于传递更多信息的目的,对文中陈述、观 点判断保持中立,并不意味赞同其观点或证实其描述。
3.如您对文章内容、版权或其他问题持有异议,请与中实仪信网联系。联系邮箱:office@anmiya.com 联系QQ:
原子力显微镜图库
相关百科
点击排行
新手指南
采购商服务
供应商服务
交易安全
关注我们
中实仪信会员交流群

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服